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Solitons and discrete eigenfunctions of the recursion operator 
of non-linear evolution equations: I. The Caudrey-Dodd- 
GibbonCawada-Kotera equation 

Raju N Aiyert, Benno Fuchssteiner and Walter Oevel 
F- 17, University of Paderborn, 4790 Paderborn, West Germany 

Received 19 February 1986 

Abstract. The solution of the third-order isospectral equation of the Caudrey-Dodd- 
Gibbon-Sawada-Kotera equation (CDGSKE) for soliton potential is obtained recursively 
from the Riccati equation derived by iterating once the auto-Backlund transformation. It 
is then shown that the discrete eigenfunctions of the sixth-order recursion operator for this 
equation can be written in terms of the solutions of the isospectral equation. The behaviour 
of the 1-soliton solution which has certain novel features is studied. A sine-Gordon-like 
equation resembling the double-sine-Gordon equation is derived from the CDGSKE. 

1. Introduction 

Most of the known integrable non-linear evolution equations ( NLEE) have the following 
common features. 

(a) Associated with such an equation is an isospectral linear eigenvalue problem. 
(b) For every solution there exists an  infinity of constants of motion in involution. 

These NLEE can be described as a Hamiltonian system with the constants of motion 
of the Hamiltonian. Thus with a given integrable NLEE is associated an  infinite hierarchy 
of integrable equations. 

(c) About every solution there exists an  infinity of symmetries or  infinitesimal 
transformations (IT) .  This infinity of IT  can be generated either through an  integro- 
differential recursion operator for NLEE in one space dimension or  through a Lie 
product (Fokas ind Fuchssteiner 1981a, Oevel and Fuchssteiner 1982, Aiyer 1984a). 
These IT also generate the infinite hierarchy of integrable NLEE mentioned in (b) above. 

(d) These equations possess an  auto-Backlund transformation (ABT) which con- 
nects two solutions of the equation. 

(e) The spatial part of the ABT and the isospectral equation are the same for every 
member of a hierarchy of integrable NLEE.  

The fifth-order Caudrey-Dodd-Gibbon-Sawada-Kotera equation (Sawada and 
Kotera 1974, Dodd and Gibbon 1977) (CDGSKE) given by 

U, + u5x + 3Ouu3, + 30uxuxx + 180u2u, = 0 (1.1) 

while sharing all the features mentioned above has one important difference. The 
recursion operator generating the infinity of IT  about a solution u ( x ,  t )  of (1.1) does 
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not connect the I T  u,(x, t)  to the I T  u,(x, t )  (Fuchssteiner and Oevel 1982) whereas 
for the K d v E ,  modified K d v E ,  sine-Gordon equation and the n o n - h e a r  Schrodinger 
equation the recursion operator connects the I T  u,(x, t )  and u,(x, t )  (Fuchssteiner 1979, 
Aiyer 1983a). The Hirota-Satsuma coupled K d v E  is similar to the CDGSKE in this 
respect (Fuchssteiner 1982, Aiyer 1983b). As a consequence there exist about every 
solution of the CDGSKE two distinct infinite sets of IT. This we believe gives rise to 
other differences namely, the ABT for the CDGSKE is a differential equation of the 
second order and the isospectral equation is of the third order (Dodd and Gibbon 
1977, Satsuma and Kaup 1977). This point will be explained later. For the other NLEE 

mentioned above (except the Hirota-Satsuma equation) the ABT is a first-order diff eren- 
tial equation and  the isospectral equation is a pair of coupled first-order differential 
equations. 

We have studied some aspects of the CDGSKE and the results are summarised below. 
Details are given in the subsequent sections. For convenience we discuss the results 
in terms of the dependent variable w(x, t )  related to u(x, t ) ,  a solution of ( l . l ) ,  by 

u(x, t )  = w,(x, t ) .  

W, + wSr + 3Ow,w3, + 60w: = 0. 

(1.2) 

(1.3) 

Our notation is as follows. A 1-soliton solution of (1.3) with parameter k, is denoted 
by w,(x, t )  or sometimes simply as w,. The parameter k, determines the velocity of the 
soliton. A 2-soliton with parameters k ,  , k2 is denoted by w ~ , ~ .  Generally an n-soliton 
with parameters k , ,  k ? ,  . . . , k, is denoted by w ] , ~ .  These parameters determine the 
velocities of the n 1-solitons as t + CO. We emphasise that w,(x, t)  in our notation is 
a 1-soliton with parameter k,  and not an  n-soliton. 

The evolution equation for w(x, t )  is then 

2. Summary of results 

We summarise our results as follows. 
(a )  Explicit solutions of the third-order isospectral transform with an n-soliton 

w ~ , ~ ( x ,  t )  as potential are constructed recursively. If k , ,  k Z ,  . . . , k, are the n parameters 
of w,,~(x, t) we show that 2n discrete eigenfunctions, two for each k, ,  of the sixth-order 
recursion operator T (  w , , ~ )  of the CDGSKE can be written in terms of the solutions of 
the third-order isospectral transform. We thus have explicitly 2n discrete eigenfunctions 
of the sixth-order recursion operator. 

(b)  The time behaviour of the 1-soliton solution of the CDGSKE has a novel feature. 
The general 1-soliton solution has been derived and numerically evaluated for two 
special cases. 

(c) The sine-Gordon equation (SCE)  can be obtained from the K d v E  in the following 
way: 

(i) K d v +  M K d v :  by the well known Miura transform (Miura 1968); 
(ii) M K d v - ,  potential M K d v :  by transforming the dependent variable V(x, t )  in 

(iii) potential M K d V +  SG: by applying the inverse of the recursion operator 
(Fuchssteiner 1979, Aiyer 1983a, Fokas and Fuchssteiner 1981b). We similarly obtain 
a modified CDGSK and the sc-like equation from the CDGSKE. The interesting feature 
of this equation is its resemblance to the double SGE (DSGE) (Bullough et al 1980). 

MKdV to D-'V(X, t ) ;  
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Now we turn to some elaboration. By an  n-soliton solution W , , ~ ( X ,  t )  of (1.3) we 
mean the solution 8 ( x ,  t )  obtained by n applications of the ABT (Dodd  and Gibbon 
1977, Satsuma and Kaup 1977) 

(2.1) ( M -1 - M ' ) , , + ( ~ - u M ' ) ~ + ~ ( M ' - u M ' ) ( ~ + u ' ) , = ~ ~  

starting from the solution w = 0 of (1.3). I t  can be shown that if w (or 8 )  is a solution 
of (1.3) then 8 (o r  w )  satisfying (2.1)  is also a solution of (1.3). 

I f  in (2.1) M' = 0 and k = k ,  then 8 is the 1-soliton M', with parameter k , .  In the 
next step if MI = w, and k = k2  in (2.1) then E is the 2-soliton w , , ~  with parameters 
k ,  , k 2 .  Such successive application of (2.1) gives W = w1 ,, an n-soliton with parameters 
k , ,  k 2 ,  . . . , k ,  (see the earlier section on notation). 

With 

W - M' = *,/* (2.2 

equation (2.1) can be put in the form 

rLi\ + 6 ~ ' , $ ,  = k ' 9  (2.3 

which is the isospectral equation associated with (1.3) (Dodd and Gibbon 1977, Satsuma 
and Kaup 1977). Let us  consider an infinitesimal change y ( x ,  t )  of w(x, t )  and denote 
the corresponding change in 8(x, t )  by z(x, t ) .  Thus 

U' -+ U' + ey *-+ 8 + € Z .  

Substituting these in (2.1) and retaining terms linear in E we obtain 

z,, +3(  8 - w)"+3( 8 - w)z, +3(  8 + " ) , Z  

- - y,, +3(  8 - M'y - 3(M' - M'))', +3(  8 + U!),,. (2.4) 

which with y = 0 reduces to 

z , ,  +3(  8-  w)z, + 3 [ ( 8 -  w ) ? + ( 8 +  w),]z = o  ( 2 . 5 )  

i.e. a linear second-order equation in  z. This means that there are two linearly 
independent I T  about 8 ( x ,  t )  corresponding to the zero I T  ( y  = 0) about w(x, t ) .  This 
we think arises from the two independent sets of I T  about a solution of (1.3). The ABT 

(2.1) and consequently (2.5) being of second order is not surprising for this alone 
would lead to two linearly independent I T  about @(x, r ) .  This also explains why the 
isospectral equation (2.3) is of third order. Later we will show that the solutions of 
(2.5) can be written in terms of the solution of (2.3) and that this is of third order will 
again give rise to two linearly independent IT which are solutions of (2.5). 

We obtain an interesting result for the non-linear superposition principle from the 
ABT (2.1). Starting from a known solution w(x, t )  of (1.3) we represent by W,(x, t )  
the solution obtained by adding one soliton with parameter k ,  to w(x, t ) .  By 
W,,(x, t ) (  W{,(x, t ) )  we represent the solution obtained by adding one soliton with 
parameter k , (k , )  to W,( W,). Note that we are using the notation W,, !?, W, and nor 
w,, w, or U',,. The latter are 1- or 2-soliton solutions obtained from the ABT by one or 
two iterations starting from w = 0. W,( W , )  and W, on the other hand are obtained 
from the ABT by one or two iterations starting from any solution U' of (1.3), not 
necessarily equal to zero. Assuming that the Bianchi permutability holds we have 
W,,(x, t )  = W,,(x, t ) .  This equality leads to a first-order differential equation in W,,(x, t ) .  
We d o  not obtain the algebraic superposition principle as in the case of the K d v E  or 
SGE for, in these cases, to start with, the ABT was a first-order differential equation. 
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One could go a step further, that is derive an algebraic superposition principle for 
Wl,k(x, t) ,  the solution being obtained by adding a soliton to Wy(x, t ) .  But the first-order 
differential equation for Wl,(x, t )  is a simple Riccati equation which can be easily 
solved, The very interesting and useful result that follows from the solution of this 
Riccati equation is that we can solve the scattering equation (2.3) with an n-soliton 
as potential (that is w = w ~ , ~  in (2.3)) in terms of the solution of (2.3) with an 
( n  - 1)-soliton as potential, up to a quadrature. 

This in turn enables us to obtain explicitly the solutions of (2.5) since the solutions 
of (2.5) can be written in terms of the solutions of (2.3). Then again the solutions of 
(2.5) (if +? = w , , ~  and w = w ~ , ~ - ,  are soliton solutions) are eigenfunctions of the sixth- 
order recursion operator of the CDGSKE. We thus have explicitly the discrete eigenfunc- 
tions of the recursion operator. 

The 1-soliton solution of (1.3) also presents certain novel features. From (2.1)-(2.3) 
it follows that the 1-soliton wl(x, t )  is of the form 

Wl(X,  f )  = *x(x, t)/*(x, f )  (2.6) 

*3x = k:*. (2.7) 

where 

The general solution of (2.7) such that (2.6) satisfies (1.3) is 

+ = [A, exp - i&(px + a t )  + A2 exp(px - at) +A3 exp - (Px - at)]  exp(ip/&)x 

where 

(2.8) 

P = (i&/2)k1 a = 16p4. (2.9) 

a can be found by substituting (2.6) in (1.3). The time dependence of w,(x, t )  is the 
most interesting feature of this result. The time dependences of the oscillatory and 
non-oscillatory parts are different. The solution given by (2.6) and (2.8) changes shape 
with time with a definite period. The usual solution (Dodd and Gibbon 1977) 

wl(x, t )  - p tanh(px - a t )  (2.10) 

is obtained from (2.6) and (2.8) with A, = 0 and A,, A3 arbitrary but of the same sign. 
As a consequence of this time dependence (2.8) 

w l r  #constant x w l x .  (2.11) 

This can be traced to the fact that in the 1-soliton manifold obtained by putting w = 0 
in (2.1) (or given by (2.6) and (2.7)) the spatial derivative part in the CDGSKE (1.3), 
namely w5x +30WxW3, + 60w:, does not reduce to constant x w, but to constant x 

The details are covered in the following sections. In 0 3 the first-order Riccati 
equation for W!,(x, t )  is derived from the ABT and solved. In 9 4 the solution of the 
isospectral equation with n-solitons as potential is constructed recursively. In 0 5 the 
solutions of (2.5) are obtained in terms of the solutions of the isospectral equation 
(2.3) and it is then shown that the solutions of (2.5) are eigenfunctions of the sixth-order 
recursion operator. In § 6 the general 1-soliton solution is derived and its behaviour 
discussed. The two discrete independent IT about the 1-soliton are discussed. In 9 7 
the sG-like equation obtained from the CDGSKE is derived and its similarity to the 
DSGE displayed. 

( wxx + 2 w wx 1. 
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3. The derivation and solution of the Riccati equation obtained by iterating the ABT 

As before let G = W,(x, t ) (  W = W2(x, t ) )  be the solution of (1.3) obtained from the ABT 

(2.1) by adding one soliton with parameter kl(k2) to w(x, t )  where w(x, t )  is any 
solution of (1.3). Assuming that the Bianchi permutability holds we represent by the 
common symbol W,,,(X, t) the solution obtained from the ABT by adding a soliton 
with parameter k2(kl) to W,(x, t)( W2(x, t)). Then from (2.1) follow the equations 

( 3 . 1 ~ )  

(3.lb) 

( 3 . 1 ~ )  

(3 . ld)  

(3.2) 

(3.3) 

- ( w1,2 - w){( w, - w)2 - ( w, - w)’+ [( w2 - w), - ( w, - w),]} = 0. 

(k1,2),+ $;,2- $1*2[e2+ 6 9 ] = 0  (3.4) 

$1.2 = w1.2 - w 

$,= w,-w (3.5) 

This can be written as 

where 

- 
w2= w2- w. 

This is a Riccati equation and is linearised by the substitution 

+,,2 = ‘ P x / 9 .  (3.6) 

VI ,, - VI, [ $2 + fil + ( $2 - e,), / ( $2 - +, )] = 0. 

Equation (3.4) reduces to 

(3.7) 
If cl, $2 is written in the form 
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one then immediately obtains 

q x  = f 2 A  - f 2 f l x  

so that obtaining cl,, is reduced to the integration of (3.9). 

(3.9) 

4. Solutions of the isospectral equation (2.3) with soliton as potential 

Using the results of the last section we construct the solutions of 

+3x +6(wl,n)x+x = k3+ (4.1) 

for an n-soliton wl,, with parameters k , ,  . . . , k, as the potential. 
In 0 3 we considered solutions B(x, t )  = W,(x, t )  (or W2(x, t ) )  of the ABT (2.1) 

starting from an arbitrary solution w(x, t )  of (1.3). We now restrict w(x, t )  to be 
a soliton solution. If in particular, we consider w to be an ( n  -2)-soliton with 
parameters k , ,  k 4 , .  . . , k,, then W ,  = B obtained from (2.1) with k =  k ,  is an 
( n  - 1)-soliton with parameters k l ,  k, ,  . . . , k,. Similarly W2 = B with k = k2 is also 
an ( n  - 1)-soliton with parameters k , ,  k , ,  . . . , k,.  The solution Wl,2 of 0 3 is then an 
n-soliton with parameters k l ,  k 2 , .  . . , k,, that is w ~ , ~ .  

In this section we will therefore denote these w, W, , W, and WI,, by 

w = wl,n-2(k, 9 k2) ( 4 . 2 ~ )  

the subscript indicating that it is an ( n  -2)-soliton and ( k l ,  k,)  indicating that the 
( n  -2) parameters of this ( n  -2)-soliton do not contain k , ,  k2 from the sequence 
k , ,  k , ,  k 3 , .  . . , k,. Similarly 

wl,n-,(k2) (4.2b) 

indicates that it is an ( n  - 1)-soliton which does not contain the parameter k , .  Then 

W2 = w I , n - l ( k l )  ( 4 . 2 ~ )  

and 

(4.2d) 

(4.2e) 
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(4.7) 

(4.8) 

(4.9) 

(4.10a) 

(4.1 Ob) 

( 4 . 1 1 ~ )  

(4.11b) 
Combining (4.6), (4.9) and (4.11) we have a solution of (4.6) with an (n-1)-soliton 
as potential in terms of the solutions of the same equation with an (n -2)-soliton as 
potential. We thus have a recursive scheme for obtaining the solution of the third-order 
scattering equation (2.3) with an n-soliton as potential. 

We note that the eigenvalue k, in (4.6) is not a parameter of the ( n  - 1)-soliton 
wl,n-l(kl)  which appears as the potential. If we require the solution of (4.6) with an 
eigenvalue k: which appears as a parameter in the ( n  - 1)-soliton potential, that is a 
solution of 

(g(W)3x + 6( wl,"-l(kl ) )Xk(kl  ) ) x  = k?g( k l )  (4.12) 
then we consider one solution f of 

i = 2 , 3 , .  . . , n 

4 3 ~ + 6 [ ~ l , n - 2 ( ~ 1  9 k ) ] x $ x  = k?4 (4.13) 
such that 

f x l f =  wl,"-l(k,) - Wl,n-2(klr k,) (4.14) 
and another solution f of (4.13) which does not depend linearly on f: Then 

(4.15) 
is a solution of (4.12). 

In P 5 we will show that the eigenfunctions of the sixth-order recursion operator 
T(w,,,) (see (5.6) for the definition) of the CDGSKE with eigenvalue A = -27kf can be 
written in terms of the solutions of (4.6). 

g ( k 1 ) = 0 - ( Lf - ffx 1 / f 
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5. Eigenfunctions of the recursion operator for soliton solutions 

Consider equation (4.5). Let y ( x ,  t ) ,  h ( x ,  t )  and z ( x ,  t )  be infinitesimal changes in 
~ ~ , ~ - ~ ( k ~ ) ,  g ( k , )  and w ~ , ~  respectively. That is 

wl,n-l(kl) + w l , n - l ( k l )  + CY 

g ( k l ) + g ( k l ) + E h  (5.1) 

W1.n -* W1.n + EZ* 

4x9  t ) = y ( x ,  t ) + ( h / g ( k , ) ) , .  (5.2) 

4x9 1 )  = (h /g (kI ) )x .  (5.3) 

Substituting (5.1) in (4.5) and equating terms linear in E we obtain 

For y ( x ,  r) = 0 we obtain 

We claim that ( h / g ( k , ) ) ,  is an eigenfunction of the sixth-order recursion operator 
(Fuchssteiner and Oevel 1982) with eigenvalue = -27kf. We show this in two steps. 
First the RHS of (5.3) is shown to satisfy (2.5) with i? = w ~ , ~  and w = that 
is z = ( h / g ( k , ) ) ,  satisfies 

z , , + 3 ( w , , n - w , , n - , ( k , ) ) z . ~ + 3 [ ( w , , n - ~ , , n - , ( k , ) ) * + ( ~ l , n + w l , n - t ( k r ) ) x I ~ = 0 .  (5.4) 
It is then shown that any solution of (5.4) is an eigenfunction of the recursion operator 
T( w , , ~ )  with an eigenvalue = -27kf. These proofs are direct and are sketched below. 
Since g ( k , )  satisfies the linear equation (4.6) and y = O ,  h ( x ,  t )  also satisfies (4.6), 
that is 

h,r +6(wl,n-l(kl))xhx = k:h. ( 5 . 5 )  
Evaluate z , ~  and z,, from (5.3). We eliminate wl , , ,  using (4.5). Substitute for h,, and 
(g(kl))3'r using (4.6) and (5.5) and the result follows. 

The sixth-order recursion operaws  for the CDGSKE (Fuchssteiner and Oevel 1982) 
can be written in the factorised form as (Aiyer 1984b) 

T(  W 1 . n )  = D-I[D2 24(Wi,n 1, 12( W i , n  ),.yD-'I 

X [ D 2  + 6( Wl ,n  ) x l 0 [ 0 *  + 6( W1.n 1x1 .  (5.6) 
This generates the IT about w ] , ~ .  We have to show that 

T ( w , , , ) { z }  = -27kfz (5.7) 
where z ( x ,  t )  satisfies (5.4). The proof is direct. Equation (5.4) and the ABT 

f W 1 . n  - W l . n - l ( k l ) } x . y  + { w , , n  - ~ ~ . ~ - , ( k ) } ~  
+3{wl,,, - ~ ~ , n - l ( k I ) } { w l , n  + Wl,n-l(kl))x = k: (5.8) 

have to be used repeatedly to reduce the higher derivatives of z and w ~ , ~ .  The only 
point which presents some difficulty is the evaluation of 

(5.9) 
This is evaluated in appendix 1. 

The rest of the calculation is direct and one finally obtains (5.7). We have thus 
succeeded in obtaining the eigenfunctions of the sixth-order recursion operator T( w ~ , ~ )  
in terms of the solutions of the linear equation (4.6) or (5.5). Furthermore, a method 
to explicitly construct the solution of this linear equation recursively has been given 
in § 4. 

D-'[D* + 6(wI,n).xl0[D2 + 6 ( w I , n ) x l z .  
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Now ( 5 . 5 )  has three linearly independent solutions which we denote by h , ( x ,  t ) ,  
i = 1,2,3.  This might lead one to conclude that there are three independent eigenfunc- 
tions of the recursion operator belonging to the eigenvalue -27k:. However only two 
of the three functions 

are linearly independent because g( k , )  and h are solutions of the same linear equation 
and 

for some constants a! .  Hence 

3 c a t ( k / g ( k , ) ) x  =o. 
I = ,  

(5.11) 

(5.12) 

For each of the n parameters k,, i = 1 to n, of the n-soliton we have two independent 
eigenfunctions giving 2n discrete eigenfunctions of the recursion operator T (  w ~ , ~ )  
which are also the IT about the n-soliton. In contrast, about the n-soliton of the KdvE 
one has n discrete IT. The extra factor of 2 arises from the two independent sets of 
IT for the CDGSKE. 

6. 1-soliton solutions and their discrete IT 

In this section we discuss the behaviour of the 1-soliton solution and some aspects of 
the two discrete IT about the 1-soliton. 

By a 1-soliton w1 we mean a solution G = w, of (2.1) with w = 0. The equation for 
w , ( x ,  t )  is 

( wl)xx + 3 w ,  w l x  + w: = k:. 

Following Dodd and Gibbon (1977) (6.1) reduces to 

* 3 x  = k;* 

WI = *x/ *. 
with 

A general solution of (6.2) is 

(6.3) 

II, = A ,  exp(k,x) + A> exp( 8klx)  + A,  exp( O*k,x) (6.4) 

where 8 and 8" = (-1 * i&)/2 are the cube roots of unity. 
We now come to the time dependence of w , ( x ,  t ) .  Being a 1-soliton it might be 

natural to assume that 

(6.5) 

However this is not true for every solution w,(x, t )  when $ has the general form (6.4). 
We found that w , ( x ,  t )  given by 

w , ( x ,  t )  - w , ( x -  a t ) .  

WI(X, t )  =fr(x, t ) / f ( x ,  t )  (6.6) 
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where 

f (  x, t )  = [ A ,  exp - i&(px + a t )  + A 2  exp(px  - a t )  

t A,  exp - (px - a t ) ]  exp( ip /&)x  (6.7) 
satisfies the CDGSKE (1.3) where a can be determined by requiring that (6.6) satisfies 
(1.3). The time \ariation of the oscillating part is different from the time variation of 
the other terms. The factor exp(ip/d?)x is of no consequence as it cancels when 
u’,(x, t )  is evaluated from (6.6). Here 

p = (i&/2)k1 and a = 16p‘. (6.8) 
For A ,  = 0 ,  u’,(x, t )  reduces to the result obtained by Dodd and Gibbon, namely 
( A 2  = A ,  = 1, say) 

(6.9) 
The time dependence of w,(x, t )  given by (6.6) and (6.7) can be viewed in the following 
way. In  the 1-soliton manifold defined by (6.1) the CDGSKE (1.3) reduces to 

(6.10) 

w, (x, t ) = p [ tanh( px - at ) + i /  d]. 

M’, - 9 k ( M’ I ,, + 2 W’, M’ I , ) = 0 

that is 

( M’I )i, + 3 &‘I ,  ( W’I 1 3 ,  + 6O( M’i ‘i 1’ (6.11) 

reduces to 

-9 k ;( MI, ,\ + 2 U’, U’,, ) (6.12) 

if one uses (6.1 ). (6.1 1 )  does not reduce to 

constant x w’, ~ (6.13) 

so that w l r  is not proportional to w,, and thic is also the case for the time dependence 
given by (6.6) and (6.7). 

If however one considers the 1-soliton solution given by (6.9) then 

M’, = constant x M’,, (6.14) 

but in this case 

(w,),, +2w,w,.  =constant x wI\ (6.15) 

as can be verified directly. 
Let us now consider the I T  about the 1-soliton arising from the trivial I T  about the 

zero solution of the CDGSKE. This can be obtained by putting W = U’, and M = 0 in 
(2.5) or directly from (6.1) with w,+  W , + P Z .  The equation for the I T  z(x, t )  about 
w , ( x ,  r )  is 

(6.16) 

It can be verified directly using (6.1) that z ,  = w,, and z7 = (w,, + w : ) ~  are solutions 
of (6.16) which is just the reduction of (6.1 1) or w , ,  in the 1-soliton manifold. Therefore 
for a general solution w,(x, t )  given by (6.6) and (6.7) the two solutions z ,  and z2 of 
(6.16) are the two independent IT. However for w,(x ,  t )  given by (6.9), we have seen 
that z ,  is proportional to z 2 .  But there does exist apart from z ,  another I T  about w , ( x ,  t )  
given by (6.9). This can be easily obtained from (6.16) using the Wronskian. This 
solution is 

(6.17) 

z , ,  + 3 U’, z ,  + 3 ( Wj f + w , ~ ) z = 0. 

z2 = [sech(px - a t )  exp(-i&)(px+ a t ) ] x .  
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Figure 1. 1-soliton I U,(x, f)l  for the case when no singularity develops. A, = A ,  = A, = 1; 
x range = -5 -5 ;  r range = 0-2 (periods). 

Figure 2. IU,(x, r)l for the case when an initially non-singular pulse develops singularity 
at two instants of time. A, = 1, A, = A, = 0.3; x range = -5-5; f range = 0-2 (periods). 
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This IT cannot be written in terms of w1 and its partial derivatives as could be done 
for the general case. Also the time dependences of the sech term and  the oscillatory 
term are different. 

If one considers the seventh-order equation belonging to the CDGSK hierarchy, 
that is 

(6.18) 

where the recursion operator T(w) is given by (5.6) with wl," = w then in the 1-soliton 
manifold T ( w , ) { w , , }  reduces to -27k:wl, so that (6.18) reduces to 

(6.19) 

The 1-soliton solution would again be given by (6.6) but with the important difference 
that the time dependence in (6.7) is the same, namely (Px  - u t ) ,  in all the terms. This 
is an  interesting difference in the behaviour of the 1-soliton solution (and so also for 
the higher solitons) of the NLEE belonging to the same hierarchy. 

We now discuss some of the novel features of the behaviour of the 1-soliton 
ul(x, t )  = wlx(x, t ) .  We have observed earlier that with A ,  = O  and A 2 = A 3  = 1 we 
obtain the usual soliton solution. 

(6.20) 

w, + T (  w){ w,} = 0 

w,, - 27 k : ~ , ,  = 0. 

u,(x, t )  - sech2(px - a t ) .  

A singular solution 

u , ( x ,  t )  - cosech2(px - a t )  (6.21) 

is obtained with A ,  = 0, A,  = -A3 = 1. 
If A I  # 0 then certain novel features appear. Let us take A ,  = 1 without any loss 

of generality. In this case f given by (6.7) is complex and Iu,(x, t ) l  tends to infinity 
only when both the real and  imaginary parts of f(x,  t )  vanish. An analysis of the 
values of (x, t )  when this can happen leads to the following two possibilities. 

(a )  A solution non-singular to start with continues to propagate as a non-singular 
solution. 

(b)  A solution non-singular to start with becomes singular at  one or  at most two 
instants of time. That is, a non-singular solution becomes singular as it evolves in time 
and again becomes non-singular. 

Whether \ u , ( x ,  t) l  behaves according to (a) or  (b) depends upon the values of A I ,  
A, and A , .  For example we have plotted the evolution of Iu,(x, t ) l  for A I  = A, = A3 = 1 
(see figure 1) when it behaves as in (a) and A ,  = 1, A,  = A,  = 0.3 (see figure 2 )  when 
it behaves as in (b). The behaviour described in (b) is to be contrasted with that given 
by (6.21) where the solution has a singularity for all t .  

Another interesting feature of the solution when A ,  # 0 is that Iu , (x ,  t ) l  starts as a 
symmetrical double-peaked curve. One of the peaks rises at the cost of the other, 
reaches a maximum and then falls while the other begins to grow. In a full period 
the symmetrical shape is regained. This behaviour is reminiscent of the solution of 
the double SCE (Bullough et af 1980) where the peaks wobble. A possible reason for 
this similarity to the solution of the DSGE is given in § 7. 

7. The sc- l ike  equation from the CDCSKE 

The scheme for deriving the sc-like equation from the CDGSKE is the following. We 
will first consider how to obtain the SCE from the KdvE. 
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Using the Miura transform one obtains the modified KdvE from the KdvE. One can 
then go to the potential form of the MKdvE. Using the inverse of the recursion operator 
for this potential form one obtains the usual SGE (Fuchssteiner 1979, Fokas and 
Fuchssteiner 1981a, b, Aiyer 1983a, b). We follow a similar procedure for the CDGSKE. 

We start from the CDGSKE for u(x, t )  given by ( l . l ) ,  namely 

-U, = US, + 30UU3, +~OU,U,, + 1 8 0 ~ ~ ~ ~ .  (7.1) 

Let us transform the dependent variable U in (7.1) by the Miura transform to a new 
variable V(x, t )  

6u=iVx+V2.  (7.2) 

Then Y(x, t )  satisfies the modified SK (MSK)  equation (Fordy and Gibbons 1980) 

- V, = V5,  - 5iVxV3, + 5V2V3, - 5iY5, + 20WxYxx + 5Vi  + 5v"Vx. 

Using the proper transformation laws (Fokas and Fuchssteiner 1981a, b) one obtains 
the recursion operator TMSK for the MSK equation with TSK(w) given by (5.6) 

T M S K (  V )  = (i  D + 2 V)- '  DTsK( w ) D-'( i D + 2 V ) .  (7.3) 

V = 4 . Y  (7.4) 

-4, = 45, +5454,, - 5 i ~ x x ~ 3 x + 5 ~ . ~ ~ 5 x +  41.. i (7.5) 

To obtain the potential MSK equation we put 

and find the NLEE for 4(x, t )  from (7.1), (7.2) and (7.4) 

(7.6) 

To obtain the equation corresponding to the SGE for CDGSKE we apply T;hSK(4) to 
2, the RHS of (7.5). The derivation of T p M S K ( 4 )  is given in appendix 2. It is given by 

~ & , ~ ( 4 )  = D - ' ( D - ~ ~ ~ , ) - ' D ( D + ~ ~ , ) - ' ( D - ~ ~ . ~ ) - ' D - ~  

x (D+i4.r)- '(D - i 4 , ) - ' ~ ( ~ + 2 i + , ) - ' .  (7.7) 

( D + ( Y ~ , ) - '  =exp(-@) (7.8) 

T & K ( ~ ) { z }  = D-'(exp(-i4) -exp(2i4)) (7.9) 

Using 

we obtain using (7.5) 

where the boundary condition 4 + i 2 n r  as x -+ --CO is used. The s d i k e  equation for 
the CDGSKE is therefore 

4, = T P h S K ( @ ) { 2 } *  (7.10) 
Simplifying the R H S  of (7.9) we obtain from (7.9) and (7.10) 

4,, =sin 4+exp(3i4/2)  sin(4/2) 

which resembles the double SGE (Bullough et a1 1980). 

(7.11) 
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8. Conclusion 

The ABT for the CDGSKE is of second order. By a single iteration we have obtained a 
first-order equation for the n-soliton in terms of ( n  - 1)- and ( n  -2)-solitons. Using 
this we have constructed recursively the solution of the third-order isospectral equation 
with an n-soliton as the potential in terms of the solution of the same equation with 
an ( n  - 1)-soliton as potential. The discrete eigenfunctions of the sixth-order recursion 
operator T( w ~ , ~ )  where wl ,n  is an n-soliton is then found in terms of the solutions of 
the isospectral equation. Some details about the behaviour of l-solitons and their IT 
are studied. Finally that equation for the CDGSKE which is equivalent to the SGE for 
the KdvE is derived. 
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Appendix 1 

Recalling equation (5.9), we have 

D- ’Y= D-’[D2+6(wl,n)x]D[D2+6(wl,n)x]z. 

(Al . l )  

(A1.3) 
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Appendix 2 

From (7.3), (7.4) and (7.6) 

TPMSK( 4)  = D-'(iD + 2q!4-'DTSK( w)D-'(iD +24,).  (A2.1) 

The problem of finding TPhSK( 4)  is therefore reduced to finding Ti;( w )  where TSK( W )  

is given by (5.6). T,L(w) is obtained below. 
With 

?f=i$ , /+  (A2.2) 

and using (7.2) we obtain 

6~ = 6w, = -+x,/ 9. (A2.3) 

Substituting (A2.3) in (5.6) we can further factorise (5.6) to give 

TSK(W) = D - ' ( D +  2 + , / $ ) D ( D  -2$ , /@)D- '  

x ( D  + *,/ - *,/ * ) D ( D  + *,/ * ) ( D  - *,/ *). (A2.4) 

Since TSK(w) is the product of first-order differential operators its inverse can easily 
be found. 

TPMSK(4) = ( D + 2 i 4 , ) D ~ ' ( D - i ~ , ) ( D + i ~ , )  

Combining (7.4), (A2.2) and (A2.1) we obtain 

x D ( D - i ~ , ) ( D + i ~ , ) D - ' ( 0 - 2 i ~ , ) D  

whose inverse is given by (7.7) and (7.8). 

(A2.5) 
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